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This paper studies the propagation of a wave packet in regions where the central 
packet frequency w is close to the local maximum of the effective Viiisala frequency 
N,,(z) = N(z)/[l -k. U ( z ) / w ] ,  where k is the central wavevector of the packet and U 
is the mean current with a vertical velocity shear. The wave approaches the layer 
w = N s  asymptotically, i.e. trapping of the wave takes place. The trapping of guided 
internal waves is investigated within the framework of the linearized equations of 
motion of an incompressible stratified fluid in the WKB approximation, with 
viscosity, spectral bandwidth of the packet, vertical shear of the mean current and 
non-stationarity of the environment taken into account. As the packet approaches 
the layer of trapping, the growth of the wavenumber k is restricted only by possible 
wave-breaking and viscous dissipation. The growth of k is accompanied by the 
transformation of the vertical structure of internal-wave modes. The wave motion 
focuses at a certain depth determined by the maximum effective Vaisiila frequency 
N s .  The trapping of the wave packet results in power growth of the wave amplitude 
and steepness. At larger times the viscous dissipation becomes a dominating factor 
of evolution as a result of strong slowing down of the packet motion. 

The role of trapping in the energy exchange of internal waves, currents and 
small-scale turbulence is discussed. 

1. Introduction 
The propagation of internal waves in the horizontally inhomogeneous ocean has 

been intensively investigated for the last two decades. (A brief review of the papers 
published on this subject up to 1976 can be found in the monograph by Miropolsky 
(1981).) The horizontal gradients of mean density fields and flows in the ocean are, 
as a rule, much smaller than the vertical ones. However, the regions with significant 
inhomogeneity that should be taken into account are rather typical (e.g. frontal zones, 
synoptic eddies). On the other hand, direct satellite observations show that internal- 
wave packets can propagate over great distances, up to hundreds and thousands of 
kilometres (e.g. Ape1 et al. 1975). Even small horizontal gradients can significantly 
change both the kinematic and the dynamic structure of internal waves over such 
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distances. The investigation of the interaction between internal waves and large-scale 
density and flow inhomogeneities is becoming increasingly relevant in view of the 
progress achieved in the study of the large-scale motions in the ocean that cause the 
horizontal inhomogeneity of mean fields (Monin, Kamenkovich & Koshlyakov 1982). 

The description of internal-wave dynamics in the inhomogeneous ambient fields 
of density and currents is generally a very complicated problem even in a linear 
approximation (in a linear approximation the problem is essentially the analysis of 
a partial differential equation that does not allow for the separation of the variables, 
if vertical and horizontal inhomogeneities are taken into account simultaneously). 
Therefore the WKB approximation, with an assumption that the inhomogeneity is 
smooth in comparison with the wavelength, is generally used. Besides, a model 
exponential character of stratification is usually assumed (Basovich & Tsimring 1984; 
Miropolsky 1974; Mooers 1975a, b ;  Olbers 1981 ; Voronovich 1976b). The latter means 
that oblique propagation of three-dimensional small-scale internal-wave packets in 
the deep ocean is considered, with the scale of the vertical variability of the Vaisala 
frequency N exceeding greatly the typical wavelength (Phillips 1977). The trapping 
of these waves by large-scale horizontal inhomogeneities of the ambient fields was 
pointed out by Miropolsky (1974), Voronovich (1976a), Basovich & Tsimring (1984), 
Mooers ( 1 9 7 5 ~ )  and Olbers (1981). The phenomenon of trapping consists of the 
asymptotic drift of the wave with intrinsic frequency 52 (in the reference system 
moving with the flow) to the vertical layer where the freqency 52 is equal to the local 
value of the constant-depth Vaisalil frequency N ,  i.e. the wave is trapped by the layer 
with 52 = N .  It has been shown that, as the monochromatic wave approaches the 
layer of trapping, its amplitude tends to infinity. I n  the case of exponential strati- 
fication, however, the trapping is not a structurally stable effect. Olbers (1981) 
showed that even a minor vertical shear of the ambient flow velocity results in wave 
reflection at the layer 52 = N .  

Pronounced vertical variability of stratification and currents is the most typical 
feature of the upper ocean. As a result, the internal waves propagate in the upper 
ocean as if in a waveguide (see e.g. Phillips 1977). Smooth horizontal inhomogeneities 
of the ambient flow and stratification lead to gradual rearrangement in the mode and 
kinematic internal-wave structure. Since the inhomogeneity scales are great in 
comparison with the wavelength, a modification of the WKB method for multimode 
systems can be used to  describe the internal-wave evolution (see e.g. Miropolsky 
1981). This method permits one to carry out an approximate separation of the 
variables and to reduce the problem to a separate analysis of the vertical mode 
structure and slow evolution of the wave parameters along the horizontal coordinates. 

In  the present paper the trapping of the internal waves propagating in a 
waveguide is considered within the framework of such an approach. The fact that 
internal waves appear in the upper ocean mainly in packets makes i t  natural to put 
forward the problem of a linear description of the wave-packet trapping. If a vertical 
inhomogeneity of stratification is taken into account, the trapping becomes a 
structurally stable effect and is accompanied by a vertical focusing of the wave motion 
a t  a certain depth in the pycnocline. It is shown that a considerable growth of the 
wavenumber and the wave amplitude occurs in the case of internal-wave-packet 
trapping in real situations. As a result, the layers of trapping turn out to  be regions 
of intense interaction between internal waves and large-scale motions. 

Section 2 deals with the application of the WKB theory to the waveguide 
propagation of monochromatic internal waves in ambient fields that are smoothly 
varying horizontally. An adiabatic approximation is valid for our purposes. The 
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trapping and the vertical focusing of monochromatic internal waves in an ideal fluid 
is analysed based on this approximation in $3. Different profiles of the VIisiila 
frequency that simulate stratification of the upper ocean are considered. In $4 we 
investigate the evolution of packets with finite spectral bandwidth in the vicinity of 
the layer of trapping, taking viscous dissipation into account. The viscous dissipation 
becomes a dominating factor of the packet evolution a t  large times because of strong 
slowing down of the packet velocity. Estimations of typical spacetime scales of 
trapping are made in $5.  The effect of a non-stationary mean flow is considered, and 
a possible role of internal-wave trapping in the energy exchange of internal waves, 
flows and small-scale turbulence is discussed. t 

2. Description of internal-wave dynamics in the WKB approximation 
The set of equations of incompressible stratified fluid dynamics linearised near the 

ground state p = po(z,y) ,  Uo = {U(z , y ) ,  0,O) can be written in the Boussinesq 

I (2.1) 

approximation as Dtu+wU,+vU, = -pz ,  

Dt = -pv ,  

D, w+gp = -P,, 

uz+vy+w, = 0. ) 
Here u = (u, v, w) are the velocity perturbations, p and p are the perturbations of 
density and pressure normalized by po(z, y), D, = a, + U a,, and N = [(g/po) a, po]i is 
the Brunt-Viiisiilii frequency. 

The ground-state parameters po(z, y) and U(z, y) are related by the equations of 
motion. In the real ocean, however, the horizontal variability of the currents has a 
much greater influence on the internal-wave dynamics than the horizontal variability 
of the density field. Nevertheless, the horizontal variation of statification can 
sometimes be a predominant factor (e.g . for waves propagating nearly perpendicularly 
to the flow U ( z , y ) ) .  Therefore the effects of these two factors will be analysed 
separately. The relation between po(z, y) and U(z,  y) that are, for example, related 
geostrophically 

(2.2) 
fo - (UPO), = Pov 
9 

(where fo is the Coriolis parameter) can be easily taken into account. 
Let us first consider the propagation of monochromatic waves of the 

f - f(y, z )  exp {ik, x- iwt) 

type in an inviscid fluid. Here w and k, are respectively the frequency and the 
x-component of the wavevector. It seems more convenient to rewrite the set of 
equations (2.1) in the form of an equation for one of the dependent variables, e.g. 

t A short communication on this work has been published in the Reports of the Academy of 
Sciences of the USSR (Badulin, Tsimring & Shrira 1983). 
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where 

The basic assumption used in this paper is that  of smooth variability of the ambient 
fields U and N along the horizontal y-coordinate. Following Voronovich (1976), we 
introduce formally a small parameter 6 equal to  the ratio of the typical wavelength 
A, and the characteristic scale of the horizontal inhomogeneity D. Here D is also much 
greater than the characteristic vertical scale of stratification d .  Hence we can seek 
a solution in the form 

P(Z,  Y) = P(Z,  EY) exp {i J k J E Y )  dy} . (2.4) 

For simplicity we consider first a vertically homogeneous flow U(y). Neglecting the 
terms of order c2 in (2.3), we obtain 

Away from the vicinity of the singular points (B+co,  U+c)  the terms in the 
right-hand side are of order E .  I n  the zeroth-order approximation, the right-hand side 
of (2.5), i.e. the terms of order E ,  is neglected. It is convenient to  rewrite the equation 
of the zero or adiabatic approximation for the vertical velocity component w, taking 

(2.6) 
into account that  BazP 9 BayP 

ik,( U -  c )  -A ay k:( U - c ) ~  ' 
W =  

I n  the zeroth-order approximation, (2.5) and (2.6) yield 

a z z W -  { I -  k:(U-c)2 Iyp(z7Ey)} [ k ; + k ; ( ~ y ) ] ~  = 0. 

Together with standard boundary conditions at the bottom and on the surface, (2.7) 
is a boundary-value problem. Solving (2.7), one finds the wavenumber k and the 
dependence of the eigenfunction w(z) on w ,  U and N .  The wavenumber and the 
eigenfunctions, as well as U and N ,  parametrically depend on y. The dispersion 
relation can be written conventionally 

52 = SZ(k,, k , ( y ) ) ,  52 = w-k ,  U .  (2.8) 

The use of the adiabatic WKB approximation, i.e. the parametric dependence of the 
dispersion relation for internal waves and the mode structure on y, means the 
application of the relations between the internal-wave parameters of the horizontally 
homogeneous fluid for a smoothly inhomogeneous case. The validity of the zeroth-order 
WKB approximation, as the internal waves approach the layer of trapping (where 
B+co) ,  is discussed in 54.4. 

3. The trapping and the vertical focusing of a monochromatic internal 
wave in an ideal fluid 

3.1. The main characteristics of trapping 

We define the layer of trapping as a vertical plane that is asymptotically approached by 
a nurrow-spectrum packet. 

We can show that, for a monochromatic wave with Doppler frequency 52, the 
vertical plane where IR coincides with the local maximum of the Vaisala frequency N ,  
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FIQURE 1. The trajectories of the packet trapped by the flow inhomogeneity ( N ,  = const, 
U = UL(0) y). (a) The current profile. (b) The trajectories of four packets of the same (modulo) initial 
(at y = 0) frequency and wavevector k projections (k,, k,). The solid line corresponds to one of the 
two identical cases (antisymmetrical curves) when k a,( V )  is negative. The unlimited monotonic 
increase of k, (while k, remains constant) and decrease of cgy (the y-component of the group velocity 
cg) is demonstrated by showing k and cg a t  three points (numbered 1, 2, 3) of the trajectory. Near 
the layer of trapping, cg, tends to zero; the difference cgz- U(y = yt,) also tends to zero. Two of 
the dashed trajectories correspond to packets with positive initial value of ka,( V). These packets, 
before the same process of trapping begins, should first pass over the simple reflection point (where 
cgu and k, change signs). 

is the layer of trapping. Let the zero value of y correspond to this layer. Using the 
y-power expansion of Q2(y)/Pm(y) in the vicinity of this plane 

and the dispersion relation in the form 

Q2 = Pm(1 -f(k)), 

we obtain f ( k )  = ay-  (3.3) 
It follows from the general properties of the dispersion curves for internal waves (see 
e.g. Phillips 1977; Miropolsky 1981) that when y-+O thenf(k(y))+a,, k(y)+m. We 
can easily calculate the time T* required for the narrow internal-wave packet to reach 
a certain point y* that belongs to the region of applicability of (3.1) and (3.3): 

(3.4) 

where k, is the value of the wavenumber at  the point y* and ko (4 k*) is the initial 
value of the wavenumber. It follows from (3.4) that an infinite time is required for 
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FIQURE 2. The trapping by the inhomogeneity of stratification ( U  = 0, N,,, = const). (a) The N,,,(y) 
dependence. (b) The trajectories of four packets of the same (modulo) initial frequency and 
wavevector k projections. The solid line corresponds to one of the two symmetrical trajectories with 
negative initial k, a, N. The unlimited monotonic increase of k, (while k, is constant) is demonstrated 
by showing k a t  points 1, 2, 3 of the trajectory. As the direction of cg coincides with k, changes 
of cg are not shown. Two symmetrical dashed trajectories (with k, a, N positive) correspond to the 
packets that  should first pass over the simple reflection point before the same process of trapping 
begins. The packets with the same w and I k, I are trapped by the same layer of trapping. 

the internal-wave packet to reach the point y = 0. Thus the layer D = N ,  is the layer 
of trapping. This fact accounts for rather strong dissipative, dispersive and nonlinear 
effects in the vicinity of the layer. The picture of the packet kinematics is sketched 
in figures 1 and 2, for the cases of linear horizontal inhomogeneities of the mean flow 
and stratification respectively. These figures, in particular, demonstrate that a packet 
is always trapped if horizontal gradients of U and N can be considered constant. 

I n  order to find the internal-wave amplitude, we use the equation for the 
conservation of the wave action, or, to be more exact, its stationary form (see 
Voronovich 1976b) 

N y z )  w2 
dz = const, (3.5) 

where w(z) are the eigenfunctions of (2.7) taken in the ‘rigid-lid’ approximation. It 
should be noted that the conservation law (3.5) follows from the condition that the 
terms on the right-hand side of (2.5) are orthogonal to  the eigenfunctions, i.e. to the 
zeroth-order solution. It is readily seen from (3.5) that, as the wave approaches the 
layer of trapping (y+O), its displacement amplitude A tends to infinity. 

There are two mechanisms that lead to the growth of the wave amplitude in the 
vicinity of the layer of trapping. The first one is associated with the ‘slowing down’ 
of the internal-wave packet, when cg+O a t  y+0 .  The second one is due to the 
maximum in the vertical profile of the Vaisala frequency N ( z ) :  as the packet 
approaches the layer of trapping, the wave motion tends to concentrate in the vicinity 
of the maximum N ,  where l2 < N(z ) .  Since the width of the localization region 
decreases, as the layer of trapping is approached, the wave amplitude also increases 
due to the vertical focusing (see figure 3). 
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FIGURE 3. The vertical focusing of the wave trapped by inhomogeneity (a) of stratification (N,,,(y) 
is shown in the box) and (b) of current (U(y) is shown in the box). The profiles of N ( z )  and of the 
first-mode eigenfunction w(z) are plotted. Points 1, 2, 3 correspond to the points 1, 2, 3 of the 
trapped-packet trajectory (see figures 1 and 2). The dashed lines mark the value of the intrinsic 
packet frequency O(k) .  

3.2. Trapping i n  a model stratification projile 

Consider as an example a model density distribution in the hyperbolic-tangent form 
that qualitatively approximates typical oceanic profiles. Assume that 

N 2 =  N", 
Ch2 [2d- ' (~- -h) ] '  

where d is the characteristic scale of varying stratification. Thus (2 .7)  can readily yield 
a dispersion relation, the expression for the group velocity cg and the eigenfunctions 
wh(z)  of the boundary-value problem (Krauss 1965) 

2(2n+ 1 )  (2n+ 1)2- 1 

(W2 
Q 2 = N ;  1 +  + { kd 

2(2n+ 1)  (2n+ 1 2(2n+ 1 )  2[(2n+ 1 ) 2 -  11 
(W3 c , = N , d  2 1 +  + I}'{ (kd)' + 

(W2 { [  kd 

( 3 . 7 ~ )  

(3 .7b)  

w = ~ ~ E - ~ " F ( - ~ , ! j ( m + 2 n + 1 ) , m + l , ~ - ~ ) .  (3 .8)  

Here F is the hypergeometric function, 5 = ch2 ( 2 2 - h ) / d ) ,  m = ikd.  For the fun- 
damental mode n = 0, w = c1t- irn.  Assuming the normalization condition to be 
jTl N2w2dz = 1 ,  we find the constant c l .  Equations ( 3 . 7 )  and (3 .8)  together with the 
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conservation law (3.5) completely determine the variation in the wave parameters. 
Assuming that kd + 1 near the layer of trapping, we can use asymptotic forms of (3.7) 
and (3.8) a t  m $ 1 .  The asymptotic form of the wave-displacement amplitude A can 
be easily found by some simple transformations : 

-P 

A - (kd)f - (5) - (Nt ) f .  (3.9) 

Note that neither the fact that  the wave amplitude tends to infinity nor the 
asymptotic growth rate as the packet approaches the layer of trapping depend on 
the chosen model profile N(z). The reasons for the universal behaviour of the wave 
in the vicinity of the layer of trapping can be clearly seen from the analysis of the 
problem given below. 

3.3. The asymptotic behuviour of the trapped internal waves 
Let us consider the case where the wave frequency is, from the very beginning, close 
enough to the maximum Vaisalii frequency. The mode is then strongly localized in 
the vicinity of the maximum N,, and the expansion of N in the z-power series can 
be used 

P = iV,(l-;). (3.10) 

Such an expansion is justified for any smooth profile N ( z ) .  Thus (2.7) reduces to 

The boundary-value problem can be easily solved assuming that, since the mode is 
strongly localized in the vicinity of N,, the boundary conditions can be taken in the 
form 1 w(z)  I + O ,  when I z I +a. Then the solution is 

W(Z,?4)  = H,[Kn(Y)Zl exP{-i[K,(Y)z121> (3.11) 

where H, is the Hermite polynomial, K,(Y) = (kN,/dQ)i,  and k,(y) is the eigenvalue 
of the corresponding boundary -value problem 

k,(y) = 2n+ 1 (;m N”,)-l . 

For the fundamental mode (n = 0), we have 

It is easily seen from (3.1 1 )  and (3.12) that  the characteristic vertical scale d,  = ( d / k ) i  
of the eigenfunction variation is much smaller than d when kd + 1. Thus the 
expansion (3.10) for short internal waves is justified. It also follows from (3.11) and 
(3.12) that, when the wave approaches the layer of trapping, the wavenumber 
increases inversely to y, and the vertical scale of the mode decreases proportionally 
to  yi. Using the conservation of the wave action in the form (3.5) and the formulae 
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FIGURE 4. The growth of the packet amplitude near the layer of trapping. (a) Sketch of current 
geometry. (b) The quasimonochromatic wave in an inviscid fluid. A =wave amplitude of 
displacement; A, = horizontal velocity amplitude; Z = wave action (Zk(y) dependence shows the 
rate of amplitude A growth due to the ‘slowing down’ only, not taking into account the 
vertical focusing), A, = ressure-variation amplitude. Near y = 0, A - y-4 N &, A,, - y-3 - t i ,  
Zi - y-I - t ,  A ,  N yi - tf)(for smooth N ( z )  profiles). (c) Solid line shows A(y) (A = displacement 
amplitude of a monochromatic wave) with viscosity taken into account. Dot-dashed line shows 
amplitude A(y) with both viscosity and finite bandwidth taken into account. 

(3 .12) ,  and assuming that the profile Q ( y ) / N m ( y )  in the vicinity of y = 0 is linear, 
( 3 . 1 ) ,  we obtain the law of wave-amplitude growth 

A 2 = - -  const N L  [( - Qd ): _ _  1 (kNm)-z] - 
N m d / k  nf kNm 2d2 Qd ’ 

(3 .13)  

A - (kd):, A ,  - ( k d ) f ,  (3.14) 

which coincides with the asymptotic behaviour of the problem with model stratification 
(3 .6) .  Here A is the wave-displacement amplitude, and A, is the horizontal velocity 
amplitude (see figures 4 a ,  b). 

3.4. Non-smooth strati$mtion profiles 
The universality of the asymptotic forms (3 .14)  is restricted by the assumption that 
the profile N ( z )  is smooth in the vicinity of the maximum and can be represented 
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by (3.10). Consider a more general case of simulating stratification in the pycnocline 
region. Let 

(3.15) 

Then the dispersion relation in the short-wave limit has the form (Dotsenko 1982) 

(3.16) 

It is seen from the boundary-value problem (2.7) that  when k is large enough the 
width of the region of vertical localization decreases with the growth of k as k-Y/P. 
From conservation of wave action in the form (3.5) we obtain the law of wave- 
amplitude evolution using the expansion (3.1) 

A hl (kd)t(4+Y) N ( a y ) - ( 4 + Y ) / 4 Y  N (Nt)f(4+Y).  (3.17) 

Thus, for a more general form of the stratification profile, the amplitudes of displacement 
and velocity also tend to inJinity when the packet approaches the layer of trapping. 

3.5. The effect of stableJlow velocity shear 

Let us now consider the effect of the vertical shear in the flow velocity. Assume that 
the shear flow is stable and there are no critical layers: Ri = (N/UL)2 % +, 
w -  k, U(z ,  y )  + 0.  Then the generalization of the boundary-value problem (2.7) takes 
the form (Voronovich 1 9 7 6 ~ ;  Miropolsky 1982) 

N2(%Y)  + kx u;z 
azzw+{(w-k ,  U(z ,  Y ) ) ~  k2(w-k ,  U(z ,  y ) )  (3.18) 

Using the stability condition of the flow, we can assume that in the vicinity of the 
layer of trapping UZ, < k2N2/(w - kx U )  k, - k2N/k,.  Then neglecting the term - Uiz 
in (3.18) and introducing the effective Vaisala frequency N,, = N ( z ) / ( l  - k ,  U / w ) ,  we 
completely reduce the problem with UL =l= 0 to the one considered previously. Thus the 
results presented in this section are also valid for shear flows. Note that N,, depends 
strongly on the direction of wave propagation. Different waveguides and horizons of 
localization correspond to the waves propagating in different directions in the flow 
with arbitrary U(z) .  In  some directions the trapping does not take place. 

4. The effect of viscosity on internal-wave packet evolution with a finite 
spectral bandwidth in the vicinity of the layer of trapping 

It was shown above that in an ideal fluid the amplitudes of monochromatic waves, 
as they approach the layer of trapping, tend to infinity according to  a power law. 
Let us estimate the limitations set on the growth of the internal-wave amplitude due 
to  viscosity and the bandwidth of the wave-packet spectrum. We first consider the 
effect of viscosity on monochromatic waves, and then the influence of dispersion on 
inviscid and viscous evolution of the wave packets. 

4.1.  Monochromatic internal waves 

Let us study the effect of viscosity on monochromatic waves. I n  order to  take viscous 
dissipation into account, we should start from the Navier-Stokes equations. Following 
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a procedure similar to that described in $2, we obtain a viscous analogue of the 
boundary-value problem (2.7) : 

[(g- 1) k'+%] 

2ivk2 
1 -- = 0. i azzzz w 

w+s2 -- 2ik2 
azz w - 

J l  V 

It is natural to  consider the viscosity to  be small, i.e. to assume the frequency 
correction caused by viscosity to be small: r = uk2/SZ + 1. (This is justified when 
k2 + Nm/v ,  i.e. for the whole range of the internal-wave scales in the ocean.) Since the 
viscosity is small, we can express azzzz w using the solution of (4.1) without this term, 
and substitute the latter into (4.1) : 

Restricting our consideration to the first order in r, we can obtain a viscous 
modification of the dispersion relation from (4.2) : 

SZ x a,= ,(k) (1 + i $) . (4.3) 

The solutions of the boundary-value problem (2.7) (neglecting viscosity) can be used 
if the conditions r + 1 and 

are fulfilled. 

the wave action I. 
The fact that  the viscosity is small allows us to find easily the transformation of 

For a stationary case 
ay(cgy I) + 2vk21 = 0. (4.5) 

Making use of the fact that according to (3.3) dy = (cg D/N,)dk in the vicinity of 
the layer of trapping and neglecting the terms - ki/k2, we obtain 

From (4.6) we find the dependences of the wave steepness and of the displacement 
and horizontal velocity amplitudes on k and y. The dependences have a qualitatively 
similar character. Then, after the parameter maximum has been reached (note that 
the maximum of each parameter occurs a t  its particular value of k,,, and y,,,), an 
extremely abrupt decay takes place ( -  exp ( -  k3/ki)). Thus the dissipation sets an 
effective lower limit on the range of the horizontal and hence vertical wavescales. 

Let us now consider the evolution of the wave-displacement amplitude for the 
stratification model (3.15) : 

(4.7) 



210 

The maximum of A is reached when k = kg ix ,  where 

S. I .  Budulin, V .  I .  Shrira and L. Sh. Tsimring 

It was mentioned above that the values of the stratification parameter y lie in the 
interval (0,2), and y = 1 corresponds to  the smooth profiles N ( z )  of the form (3.10). 
Direct substitution makes i t  obvious that when k - kAax the condition (4.4) is fulfilled 
(the ratio r/(Nz/Q2 - 1) - d / D ) .  Thus viscous dissipation remains small even in the 
region where its influence on the wave evolution is dominating. Such a pronounced 
influence of small viscosity can be accounted for by the drastic decrease in the packet 
group velocity, and hence by the packet slowing down. The time required for the 
packet to  pass a distance of the wavelength along y is much larger than (vk2)-l. For 
a model stratification with the profile N ( z )  in the form of a hyperbolic secant (3.6), 
the range of parameters typical of the ocean ( d  - lo4 cm, D - 106-108 cm, 
N ,  - 10-3-10-2 s-l, v - 10-2-10-1 om2 s-l) and for the value Q, = Nm/d2, we 
obtain the estimates k&x - 10-2-10-3 cm-' and &,,,/Ao - 10-102. 

4.2. The effect of Jinite spectral bandwidth 

Let us consider the influence of the packet spectral bandwidth. The evolution of 
packets with an infinitely narrow spectrum (i.e. non-dispersive packets) has been 
described above. The finiteness of the bandwidth spectrum leads to considerable 
dispersive spreading of the packet in two horizontal directions. The dynamics of a 
packet with finite spectral bandwidth can be described correctly by means of the 
Fourier integral taken over harmonic components. Let us, however, use a simpler 
method for the estimation of the dispersive effect. By virtue of the conservation law 
(3.5), the integral of the wave action over the whole region occupied by the field is 
retained. Let us describe the field region (i.e. the horizontal dimensions of the packet) 
by the values 1, and l , ,  and the wave field by the value of the wave action Iaveraged 
over the field region. The integral characteristics 1, 1, and 1,  at a given point (2, y )  
are related to the initial values as follows: 

c;(",,Yo)l:l:lo = ~ g ( ~ , Y ) ( ? $ , 4 & Y ) .  (4.9) 

The horizontal dimensions of the packet with a central frequency wc and a spectral 
width Aw grow with time according t o  the law 

(4.10b) 

Here k, is the central instantaneous wavenumber of the packet, and Ak is the 
instantaneous halfwidth of the spatial spectrum. As a rule, the dispersive effects are 
dominating a t  small times, which results in a'power decrease in the wave amplitude. 

The competition between dispersive and focusing factors results in a complex law 
of wave-action evolution, which depends on a concrete relation between the packet 
and the inhomogeneity parameters. Let us restrict our consideration to  the asymptotic 
laws of the packet-parameter evolution for large times. It is easily seen that the 
transverse dimension 1, tends to  the limiting value 1; x 2 Aw D/ N ,  ; each harmonic 
is trapped by its own layer of trapping. The longitudinal packet dimension 1, grows 
in two qualitatively different ways, depending on the type of the horizontal 
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inhomogeneity responsible for the trapping. When the variation in N is a dominating 
factor, 1, also tends to the finite limit 1," (1," = fl? - Aw D/N,) .  In  the majority of 
real situations, however, the horizontal flow gradient is predominant. In  this case, 
the longitudinal dimension of the packet grows linearly with time owing to the fact 
that  the layer of trapping has a different y-coordinate for different harmonic 
components, and consequently moves a t  a different longitudinal velocity U(y) : 

AU 
1," = ily" + Ub ly" t x - ( D  + 2Ut). 

Nm 

Having derived from (4.9) the asymptotic behaviour of I a t  large t ,  we can modify 
the asymptotic laws of wave-parameter variation (3.17), taking the dispersive 
spreading of the packets into account. In  the first case ( N ,  = N,(y), k:(yo) = 0) ,  the 
numerical coefficient in the laws of growth decreases by a factor - ly"/lOy : 

1"O Aw2D Aw 

1; N,,, C: (z) kD' 

In  the second case ( U  = U(y), k:(y,) 4 0) there are two intermediate asymptotic 
forms. First, a law similar to  that of the first case is realized, and then, at significantly 
larger times, the growth rate of the amplitude and of the wave steepness decreases 
by f along t and by -b along y. 

XN---  

4.3. The simultaneous effect of viscosity and dispersion 

The simultaneous effect of viscosity and dispersive spreading can be taken into 
account with the same accuracy as in $4.2. Let us take the asymptotic laws of 
wave-parameter evolution modified by the bandwidth of the packet spectrum. We 
restrict our consideration to  the case where the flow variability is the predominant 
factor : 

(4.11a) 

(4.1 1 b )  

Here A is the amplitude of the wave displacement and A ,  is the amplitude of the 
horizontal velocity u (see figure 4c) .  The relations kd - (y/D)-Y - tN,d /D are also 
valid here. Let us now estimate the maximum of the parameter A that  corresponds 
to k g i x  - (N,/vD)$. In the parameter range considered in $4.1 the dispersive 
spreading (for Aw/w - 10-I) leads to  a decrease in A,,,/Ao by a factor varying from 
10 to  10'. Note that, when dispersion is not taken into account, A,,,/Ao - 1O-1O2. 
The value A,,, depends to  a greater extent on the initial wavenumber k, and on the 
characteristic scale D of the flow inhomogeneity. The maximum of the steepness 
(Ak),,, can either exceed unity a t  small ko and D (in this case a linear theory is not 
applicable, and the wave-breaking is likely to take place) or be much less than unity. 
In  the latter case, a linear regime of viscous damping may be realized. I n  order to 
obtain an exact criterion for the initial steepness a t  which waves with a given ko will 
break a t  a given stratification and inhomogeneity , it is necessary to know the 
nonlinear laws of wave-parameter variation and the exact local criterion of breaking. 
Nevertheless, we can assume that long-enough waves trapped by a strong current 
with a large transverse gradient are most likely to break, forming turbulent paths. 
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4.4. The applicability conditions for the adiabatic W K B  approximation 

The results of the present paper have been obtained within the framework of the 
adiabatic WKB approximation. Let us analyse the boundaries of its applicability. 

Far from the layer of trapping, the corrections stipulated by the right-hand side 
of (2.5) are small owing to the fact that  kD is small, i.e. owing to the smoothness of 
variations in U(y) and N(y). In  the vicinity of the layer of trapping, the values k and 
B, as well as the right-hand side of (2.3), tend to infinity, and the applicability of 
the adiabatic approximation should be substantiated separately. 

It is known that a sufficient condition for the adiabatic WKB approximation to 
be applied in a certain region is the satisfaction of the following inequality (see e.g. 
Ginzburg 1961) 

In’lnnI 
k, n2 

6 1 ,  (4.12) 

where n = n(y) is the index of refraction ( n  = wo klwk,,) and n’ = aY n. At large k, i.e. 
in the vicinity of the layer of trapping of interest, n x k/k,. This allows us to rewrite 
(4.12) in the form 

(4.13) 

Substituting k(y) for the stratification model (3.15) (kd - (ay)-Y) into (4.13), we can 
rewrite (4.13) as (kd)llY-l ln(k/k,) 6 1 or 

(ay)Y-l In (ay)-Y << 1 .  (4.14) 

It is clear that for y > 1 the adiabatic WKB approximation remains valid up to the 
layer of trapping. At y d 1 it  seems necessary to verify whether (4.14) is valid for 
a viscous scale k - - (N,/vD$. For smooth profiles ( y  = 1) the condition of the 
WKB applicability reduces to 

It is clear that for typical scales of oceanic internal waves this condition is 
always fulfilled. t 

5. Discussion 
Let us discuss the results from the point of view of their application to the 

description of complicated internal-wave dynamics in the upper ocean. 

5.1. Space-time scales 

The trapping of internal-wave modes may be caused by both the horizontal 
inhomogeneity of stratification and the horizontal velocity shear. A wave with the 
initial frequency w, is trapped by a layer with the maximum effective BrunkVaisala 
frequency (Nef = N(z)/(l- kU/w,)) equal to wo. When the flow has no vertical shear 

t The behaviour of the internal-wave field in an ideal fluid in the immediate vicinity of the layer 
of trapping, where the WKB approximation is no longer applicable, is also of interest. The 
investigation of this problem is far beyond the framework of this paper. Let us only note that the 
wave-field singularity is very strong and cannot be described by the usual analytic methods for 
caustics, since the group velocity, as well as all its derivatives, tend to zero in a singular point. 
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FIQURE 5. An example of the graphical finding of the wavenumber and frequency threshold values. 
The dispersion curves for the first four vertical modes presented in the figure are calculated for 
typical oceanic stratification (see figure 6). The threshold values k, and O, are the points of inter- 
section of dispersion curves by oblique straight lines at angle - Urn in the case of inhomogeneous 
current, and points of intersection with horizontal dashed lines in the case of horizontal inhomo- 
geneity of stratification. 

(U,  = 0 ) ,  the condition of trapping reduces to the condition of equality between the 
Doppler-shifted frequency SZ and the local maximum N ( z ,  y ) .  

Let us estimate the scales of the waves trapped by the flow with the maximum 
velocity Urn. They are determined from the condition 

(5.1) 
N m  - wo(k) 

urn lk,l> 

For a rough estimation we can use a simpler inequality k > NJU,,,, then for 
Nm - s-l and Urn = 10, 20, 50 cm s-l we obtain the values for the threshold 
wavelengths A, = 600, 1200, 3 x lo3 m respectively. A more precise estimate can be 
easily obtained graphically. As an illustration, let us take dispersion curves for the 
first four internal-wave modes (figure 5 )  calculated for a typical profile of stratification 
in the ocean (figure 6) . i  The threshold values of k and w ( k )  are defined by the points 
of intersection of dispersion curves by oblique straight lines drawn from the point 
(0, N,) a t  an angle - Urn to the abscissae axis. For the given example, k, = 12.5, 8 
and 5 c.p.km. for the first mode (figure 5 )  correspond to Urn = 10, 20 and 50 ern s-l. 
The threshold wavenumbers for higher modes are considerably greater. This means 
that the waves of the first mode are trapped much easier. 

When the trapping is caused by the horizontal inhomogeneity of stratification, the 
threshold wavenumbers are defined in a different manner. The condition of trapping 

w ( k )  2 Nmmin (5 .2)  

is fulfilled for short waves a t  relatively high frequencies (w - Nm). The threshold 
values k and w are, graphically, the points of intersection of the dispersion curves 

t Figures 5 and 6 have been kindly placed a t  our disposal by B. N. Filyushkin and 
V. V. Goncharov. 
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FIQURE 6. An example of a typical Brunt-Viiisiilii frequency profile. 

plotted for the initial 'unperturbed ' stratification P ( z )  and of the horizontal straight 
lines with the ordinates Nmmin. For the case under consideration, the wavenumbere 
20,  30 and 7 c.p.km. (for the first mode) correspond to Nmmi, = 0.8Pm and 0.5Pm. 
Figure 7 (taken from Miropolsky, Solntseva & Filyushkin 1975) demonstrates the 
variations in the maximum Brunt-Vaisiila frequency along the meridional cross- 
section. According to the data of this paper, the mean value of a, N ,  is of order 
10-8 s-l ,-1 , and the typical spacescale D of N ,  variation is - loe m.  At the same 
time, the gradients of N ,  increase up to 3 x lo-' s-l m-l in some regions (generally 
corresponding to the frontal zones), and the scale D decreases down to - lo4 m. 

Thus the trapping (mainly by the flow inhomogeneities) of waves with scales from 
tens to thousands of metres is possible a t  the typical values of the parameters. 

5.2.  The main stages of the evolution 

As the wave packet approaches the layer of trapping, the wavenumber k grows. This 
growth is accompanied by the transformation of the vertical structure of internal-wave 
modes and is restricted only by the breaking of the waves and by viscous dissipation. 
At large k the transformation of the w(z, k) modes has a universal character for all 
smooth dependences of N ( z )  with a vertical variability scale d :  w(z)  - exp ( - kz2 /2d) .  
Thus the narrowing of the waveguide leads to  vertical wave focusing, i.e. to 
concentration of the wave motion at the depth z,, where the effectuve Brunt-Vaisala 
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FIQURE 7. Meridional cross-section for N,,, 

frequency N,, is maximum. I n  the case of the vertically homogeneous flow U ( y ) ,  the 
focusing of all trapped waves occurs at the depth z, that corresponds to N,. 

The trapping of the wave packet is accompanied by the growth of the wave 
amplitude and steepness. The growth of the amplitude with time is caused by two 
factors: the slowing down of the packet owing to a decrease in the wavelength, and 
the vertical focusing that leads to the accumulation of the wave energy in a narrow 
layer. The finite bandwidth of the packet spectrum stipulates its dispersive spreading 
that slows down the amplitude growth. At small times the dispersion may even lead 
to a decrease in the wave amplitude. Then an intermediate asymptotic behaviour is 
established : for a smooth profile N ( z )  the amplitude of the wave displacement A grows 
as ti if the trapping is caused by the variation of N ,  and as ti if the flow inhomogeneity 
is a predominant factor. In  this case the wave steepness and the parameter of 
nonlinearity grow by a factor of (Nt) i  faster. The power laws of the amplitude and 
wave-steepness growth are valid not only for smooth profiles N ( z ) .  The growth of the 
wave steepness is accompanied by an increased probability of wave-breaking. 
However, in the framework of the linear theory considered here, the saturation of 
the amplitude growth can be associated only with the viscous dissipation. At large 
times ( t  $- (D/N,) iv i )  the packet motion slows down, and the viscous dissipa- 
tion, although remaining small, becomes the predominant factor in the evolution. 
This leads to the damping of the packet amplitude - exp ( -  vN& t 3 /D2) ,  i.e. to 
the effective cutoff of small horizontal (k 2 (vD/N,)- i )  and thus small vertical 
(1, 5 ( v D / N , ) ~ d ~ )  scales. 

The characteristic time 7 of the internal-wave transformation into the viscous- 
dissipation range (7 - (DIN,)! v-4) does not, practically, depend on the initial wave 
parameters. It depends slightly on the coefficient of viscosity, but varies widely (from 
one to  some scores of days) depending on the horizontal inhomogeneity scale D.  The 
minimum spacescale of the waves that is determined by the viscous damping is of 
order - lo3 cm and also weakly depends on viscosity. A regime of viscous damping 
seems to  be possible at small-enough initial amplitudes of the waves. 
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5.3.  The effect of non-stationarity 

The ambient fields for which the basic equations were linearized were formerly 
considered to  be stationary. However, when the timescales of the packet evolution 
are comparable to the period of low-frequency motions, which are always present in 
the ocean, the applicability of the conclusions formerly obtained for the final (slow) 
stage of the packet evolution in the real ocean needs substantiation. 

Consider the motion of the wave packet in an inhomogeneous flow U ( y )  in the 
presence of a long travelling wave. Since the group velocity of the packet is much 
smaller than the phase velocities of long waves, one can assume that the wave 
component of the ambient medium depends, mainly, on time. The packet dynamics 
is affected only by the horizontal velocity component of the ambient motion U: 

u= U , ( y ) i + B ( y , t ) i +  P ( y , t ) j .  

i = cgx+ u,+ 0, 9 = cgy+ P, (5.3) 

The equations of motion of a spectrally narrow packet with a central frequency 
w and a wavevector k(k,, k,) can be written in the form (Voronovich 1976b) 

k, = 0, k, = k, a,( U,, + B) + k, a, P,. (5.4) 

Since the dependence of U on y is much slower than that on t ,  we obtain from (5.4) 

k ,  = ky(tO) exp (-lo 3, P dt )  - k ,  jt: a,( U, + 0) dt. 

Assuming 8, - sin (Ky-ut)  and K I U ( / ( T  4 1, we have from (5 .5)  

K -  K -  

U cr 
k ,  = k:-k:- V + k , -  U-k ,a ,U, t .  

(5 .5)  

It is clear from (5.6) that the low-frequency wave motions lead to periodic variation 
of the transverse wavenumber k, with respect to its mean value, but do not affect 
the linear growth of its mean value with time. It also follows from (5.6) that the 
asymptotic behaviour of k,  ( k ,  - k ,  U, t / D )  is determined by a stationary velocity 
component. 

Equations (5.3) and (5.4) show that the trajectory of the packet is a helix with 
almost elliptic turns. The trajectory of the turn centre does not depend on the 
nonstationary velocity component. 

Thus low-frequency wave motions lead to a n  oscillatory (with a long wave period) 
variation in  the packet parameters, and do not affect the dynamics of parameter values 
averaged over the period. This fact indicates that the results obtained for a stationary 
environment can be used for the description of wave-packet evolution in the real 
non-stationary ocean. 

We shall avoid discussing the strong assumption accepted here of a purely 
transverse variability of the ambient flow velocity U = U ( y ) .  The question naturally 
arises as to whether the effect of trapping is structurally stable with respect to the 
existing longitudinal variability of the flow velocity U(x) .  When the group-velocity 
component c becomes equal to the transverse component V of the flow velocity, 
a packet blocking (Basovich & Tsimring 1984) may prevent the trapping. The results 
of the study of internal-wave dynamics on non-uniform three-dimensional currents 
of arbitrary form (including the study of trapping under these conditions) will be 
reported elsewhere. Here we only mention that the longitudinal variability of mean 

gy. 
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flow in the ocean is generally much weaker than the transverse one ( U ,  < U y ) ,  and 
the characteristic values of the transverse flow velocity are often negligible. 

5.4. The role of trapping in the energy balance of internal waves and currents 

Let us now discuss a possible role of trapping in the energy exchange between internal 
waves and flows, Since the results obtained in the framework of the linear theory are 
the only ones available so far, this discussion will inevitably be a bit speculative. 

At the inviscid stage of packet evolution the wave action I (=  E / Q ,  where E is 
the wave-energy density and = w - k,  U is the Doppler-shifted frequency) is an 
invariant. The variation of the frequency 52 caused by the flow gradient stipulates 
the variation of the wave-energy density E :  

As the packet approaches the layer of trapping, 52 increases monotonically from 52, 
to N,, so that  the wave takes energy from theJlow at the inviscid stage. The maximum 
possible energy acquired by the wave (if its breaking has not already occurred) is equal 
to E,(Nm/52,- 1). The total energy loss of the flow can be estimated by the energy 
spectrum of the waves incident to the flow. 

As the packet approaches the layer of trapping, significant increases in the 
wavenumber and amplitude occur, i.e. the energy of relatively long internal waves 
and the energy taken from the flow is transferred to small-scale internal waves. 
Further, in a linear theory this energy is transformed directly into heat owing to 
viscous dissipation (part of the energy can be transferred to  the mean flow). The sink 
of the internal-wave energy into heat via small-scale turbulence due to the wave- 
breaking (the possibility of breaking increases with a growth in the wave steepness) 
is probably an essential component of the internal-wave-field energy sink. I n  this 
strongly nonlinear mechanism, the internal waves play the role of an  intermediate 
link in the energy exchange between large-scale motions and small-scale turbulence. 
When only the mechanisms of viscous dissipation and wave-breaking are active, the 
energy of all trapped waves is taken from the internal-wave field. Then the 
neighbourhood of the layers of trapping is the region of the internal-wave energy sink. 
An estimation of the internal-wave energy sink carried out for the Garrett-Munk 
spectrum with realistic inhomogeneity parameters gives us a value that greatly 
exceeds the known estimates. This indicates indirectly an important role of another 
nonlinear mechanism in the energy balance - the mechanism of the nonlinear 
interaction between the trapped packet and the internal-wave ambient field. 
Depending on the intensity of nonlinear interactions, the neighbourhood of the layers 
of trapping can be both the region of an intensive internal-wave energy sink and the 
generation region. However, the role of trapping in the energetics of the upper ocean 
can be clarified only when the nonlinear stage of trapping is studied. 

The authors are particularly indebted to A. G. Voronovitch for helpful discussions 
during the course of our work and to L. A. Ostrovsky and E. N. Pelinovsky for their 
useful comments upon the results of the paper. 
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